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Abstract

We propose a theoretical model of quantum speciation among
elements of a finite dimensional Hilbert space. The potential for
species diversity and the current environment are represented by
linear operators satisfying a compatibility criterion. A method for
calculating probabilities of production of individuals is defined.

1 Introduction

Let H be a Hilbert space H with inner product 〈·, ·〉 and finite dimension n.

We say that the ordered pair (A,B) is compatible if A and B are linear

operators on H, B is Hermitian and the composition AB has all real

eigenvalues and a unique largest eigenvalue. By CH we mean the collection

of compatible ordered pairs.

Fix (E, S) ∈ CH . Let the environment be represented by E, and the species

by S. The interaction of the species with the environment is represented by

the linear operator R ≡ ES. Let the unit eigenvectors of S be denoted by

VS = {s1, s2, s3, · · · , sn}. This set represents the “individuals” genetically

possible for the species represented by S. Note that VS forms an
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orthonormal basis for H. Let the unit eigenvectors of R be denoted by VR,

and let r ∈ VR be the eigenvector with largest eigenvalue. The probability

of production of the individual si is defined to be |〈r, si〉|2 for each

i ∈ {1, 2, 3, · · · , n}.

2 Example

Take the Hilbert space to be R8 with the usual topology and inner product

〈·, ·〉. Let the environment be represented by the matrix

E =

!

""""""""""""""""""""#

0.58 0.38 −0.49 0.45 −0.87 0.53 0.58 0.61

0.38 0.25 −0.32 0.29 −0.57 0.34 0.38 0.40

−0.49 −0.32 3.01 −0.38 −1.39 −0.45 −0.49 −0.52

0.45 0.29 −0.38 0.35 −0.68 0.41 0.45 0.48

−0.87 −0.57 −1.39 −0.68 3.07 −0.79 −0.87 −0.92

0.53 0.34 −0.45 0.41 −0.79 0.48 0.52 0.56

0.58 0.38 −0.49 0.45 −0.87 0.52 0.57 0.61

0.61 0.40 −0.52 0.48 −0.92 0.56 0.61 0.65

$

%%%%%%%%%%%%%%%%%%%%&

(2.1)
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and let the species be represented by the matrix

S =

!

""""""""""""""""""""#

4.62 −0.33 −0.95 −0.41 −0.37 −0.21 −1.33 0.06

−0.33 7.96 −0.10 −0.04 −0.04 −0.02 −0.13 0.00

−0.95 −0.10 6.10 0.43 0.78 −0.28 −0.72 0.04

−0.41 −0.04 0.43 5.32 0.12 −0.11 −0.91 −0.16

−0.37 −0.04 0.78 0.12 2.96 0.24 0.61 0.08

−0.21 −0.02 −0.28 −0.11 0.24 3.62 −0.01 0.93

−1.33 −0.13 −0.72 −0.91 0.61 −0.01 4.03 −0.12

0.06 0.00 0.04 −0.16 0.08 0.93 −0.12 1.35

$

%%%%%%%%%%%%%%%%%%%%&

(2.2)

The interaction of the species with the environment is given by the matrix

R = ES =

!

""""""""""""""""""""#

2.31 2.81 −4.60 1.14 −2.60 2.23 0.85 1.12

1.52 1.85 −3.01 0.72 −1.71 1.44 0.56 0.73

−3.63 −2.54 18.07 −0.10 −2.07 −3.13 −3.88 −1.02

1.80 2.14 −3.57 0.89 −2.03 1.73 0.66 0.88

−2.10 −4.08 −4.68 −2.44 7.47 −2.31 1.34 −1.63

2.13 2.51 −4.21 1.05 −2.37 2.03 0.74 1.03

2.33 2.81 −4.59 1.15 −2.61 2.19 0.81 1.11

2.43 2.96 −4.87 1.23 −2.75 2.36 0.89 1.19

$

%%%%%%%%%%%%%%%%%%%%&

(2.3)
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The eigenvectors of R are given by

VR =

'
(((((((((((((((((((()

((((((((((((((((((((*

(−0.26,−0.17, 0.81,−0.20,−0.09,−0.24,−0.26,−0.27),

(−0.25,−0.16,−0.28,−0.19, 0.78,−0.23,−0.25,−0.26),

(0.09, 0.60, 0.04,−0.39,−0.04,−0.54, 0.27,−0.34),

(−0.25,−0.08, 0.17,−0.18,−0.08, 0.45, 0.81,−0.07),

(−0.34, 0.30,−0.01, 0.38, 0.20, 0.40,−0.17,−0.65),

(0.59, 0.18, 0.31,−0.07, 0.58, 0.38, 0.09, 0.18),

(0.08,−0.05,−0.02,−0.23,−0.13, 0.40,−0.16,−0.86),

(−0.43, 0.12,−0.13,−0.39,−0.01, 0.09,−0.49, 0.62)

+
((((((((((((((((((((,

((((((((((((((((((((-

(2.4)

The eigenvalues of the matrix R are given by

{22.53,12.08,0.06,-0.05,-0.03,0.02,0.01,0.00}.

The eigenvector of R with largest eigenvalue is

(-0.26,-0.17,0.81,-0.20,-0.09,-0.24,-0.26,-0.27).
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The eigenvectors of the matrix S are given by

VS =

'
(((((((((((((((((((()

((((((((((((((((((((*

(0.10,−1.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00),

(0.35, 0.03,−0.83,−0.38,−0.18, 0.05, 0.12, 0.01),

(−0.56,−0.05, 0.04,−0.48, 0.20, 0.09, 0.64, 0.01),

(−0.40,−0.04,−0.48, 0.74, 0.01, 0.08, 0.22,−0.03),

(0.02, 0.00, 0.02,−0.01, 0.14, 0.92,−0.17, 0.34),

(−0.49,−0.05, 0.00,−0.17,−0.78, 0.06,−0.33, 0.02),

(0.39, 0.04, 0.29, 0.21,−0.55, 0.17, 0.62, 0.06),

(−0.03, 0.00,−0.03, 0.03, 0.00,−0.34, 0.02, 0.94),

+
((((((((((((((((((((,

((((((((((((((((((((-

(2.5)

The probabilities of production are as shown in the following table:

Individual Probability

(-0.26, -0.17, 0.81, -0.20, -0.09, -0.24, -0.26, -0.27) 0.02

(-0.25, -0.16, -0.28, -0.19, 0.78, -0.23, -0.25, -0.26) 0.52

(0.09, 0.60, 0.04, -0.39, -0.04, -0.54, 0.27, -0.34) 0.01

(-0.25, -0.08, 0.17, -0.18, -0.08, 0.45, 0.81, -0.07) 0.24

(-0.34, 0.30, -0.01, 0.38, 0.20, 0.40, -0.17, -0.65) 0.07

(0.59, 0.18, 0.31, -0.07, 0.58, 0.38, 0.09, 0.18) 0.09

(0.08, -0.05, -0.02, -0.23, -0.13, 0.40, -0.16, -0.86) 0.01

(-0.43, 0.12, -0.13, -0.39, -0.01, 0.09, -0.49, 0.62) 0.04
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3 Motivation

In quantum mechanics, observables are represented by self-adjoint

operators on a Hilbert space. Thus in proposing a model of quantum

speciation, it is natural to regard a species as a whole as some self-adjoint

operator S. In the quantum mechanical setting, each possible measurement

of an observable corresponds to a unit eigenvector and eigenvalue of this

operator, so by analogy we regard each unit eigenvector of the species linear

operator S to represent a possible individual. We postulate that each

species will have only finitely many possible individuals, thus we assume

that S, and also the Hilbert space, have finite dimension. Thus S is in fact

Hermitian. We may then regard the eigenvalues of each unit eigenvector

(i.e. individual) of S as representing the reproductive strength of that

individual. We model the influence of the environment by means of a linear

operator E which is composed with S to produce the resultant operator R.

We require that (E, S) be compatible, in the sense defined above, so that R

will have all real eigenvalues and a unique largest eigenvalue.

The definition of probability of production was motivated by the following

observation. If !φ is a random vector in Rn, how may we determine the unit

vector v̂ ∈ Rn which maximizes the expectation value E
.
!φ · v̂

/2

? It is not

difficult to show that this is accomplished by taking v̂ to be the eigenvector
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v̂max with maximal eigenvalue of the matrix

!

"""""""#

Eφ1φ1 Eφ1φ2 · · · Eφ1φn

Eφ2φ1 Eφ2φ2 · · · Eφ2φn

...
...

. . .
...

Eφnφ1 Eφnφ2 · · · Eφnφn

$

%%%%%%%&

.

The maximal value of E
.
!φ · v̂

/2

is then equal to this eigenvalue. We may

express v̂max as a unique linear combination of the eigenvectors

(individuals) of S, like so: v̂max =
N0
i=1

(v̂max · ŝi) ŝi. Again following the

pattern seen in the quantum mechanical setting, we define the probability

of “observing,” i.e. producing the individual represented by ŝi as

|〈v̂max, ŝi〉|2 = (v̂max · ŝi)2 . Although the motivation involves Hermitian

operators R, this is not assumed in the definition of compatible operators.
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