A Quantum Theory of Speciation

Kerry M. Soileau

January 14, 2012

Abstract

We propose a theoretical model of quantum speciation among elements of a finite dimensional Hilbert space. The potential for species diversity and the current environment are represented by linear operators satisfying a compatibility criterion. A method for calculating probabilities of production of individuals is defined.

1 Introduction

Let H be a Hilbert space H with inner product $\langle\cdot, \cdot\rangle$ and finite dimension n. We say that the ordered pair (A, B) is compatible if A and B are linear operators on H, B is Hermitian and the composition $A B$ has all real eigenvalues and a unique largest eigenvalue. By C_{H} we mean the collection of compatible ordered pairs.

Fix $(E, S) \in C_{H}$. Let the environment be represented by E, and the species by S. The interaction of the species with the environment is represented by the linear operator $R \equiv E S$. Let the unit eigenvectors of S be denoted by $V_{S}=\left\{s_{1}, s_{2}, s_{3}, \cdots, s_{n}\right\}$. This set represents the "individuals" genetically possible for the species represented by S. Note that V_{S} forms an
orthonormal basis for H. Let the unit eigenvectors of R be denoted by V_{R}, and let $r \in V_{R}$ be the eigenvector with largest eigenvalue. The probability of production of the individual s_{i} is defined to be $\left|\left\langle r, s_{i}\right\rangle\right|^{2}$ for each $i \in\{1,2,3, \cdots, n\}$.

2 Example

Take the Hilbert space to be \mathbb{R}^{8} with the usual topology and inner product $\langle\cdot, \cdot\rangle$. Let the environment be represented by the matrix

$$
E=\left(\begin{array}{cccccccc}
0.58 & 0.38 & -0.49 & 0.45 & -0.87 & 0.53 & 0.58 & 0.61 \tag{2.1}\\
0.38 & 0.25 & -0.32 & 0.29 & -0.57 & 0.34 & 0.38 & 0.40 \\
-0.49 & -0.32 & 3.01 & -0.38 & -1.39 & -0.45 & -0.49 & -0.52 \\
0.45 & 0.29 & -0.38 & 0.35 & -0.68 & 0.41 & 0.45 & 0.48 \\
-0.87 & -0.57 & -1.39 & -0.68 & 3.07 & -0.79 & -0.87 & -0.92 \\
0.53 & 0.34 & -0.45 & 0.41 & -0.79 & 0.48 & 0.52 & 0.56 \\
0.58 & 0.38 & -0.49 & 0.45 & -0.87 & 0.52 & 0.57 & 0.61 \\
0.61 & 0.40 & -0.52 & 0.48 & -0.92 & 0.56 & 0.61 & 0.65
\end{array}\right)
$$

and let the species be represented by the matrix

$$
S=\left(\begin{array}{cccccccc}
4.62 & -0.33 & -0.95 & -0.41 & -0.37 & -0.21 & -1.33 & 0.06 \tag{2.2}\\
-0.33 & 7.96 & -0.10 & -0.04 & -0.04 & -0.02 & -0.13 & 0.00 \\
-0.95 & -0.10 & 6.10 & 0.43 & 0.78 & -0.28 & -0.72 & 0.04 \\
-0.41 & -0.04 & 0.43 & 5.32 & 0.12 & -0.11 & -0.91 & -0.16 \\
-0.37 & -0.04 & 0.78 & 0.12 & 2.96 & 0.24 & 0.61 & 0.08 \\
-0.21 & -0.02 & -0.28 & -0.11 & 0.24 & 3.62 & -0.01 & 0.93 \\
-1.33 & -0.13 & -0.72 & -0.91 & 0.61 & -0.01 & 4.03 & -0.12 \\
0.06 & 0.00 & 0.04 & -0.16 & 0.08 & 0.93 & -0.12 & 1.35
\end{array}\right)
$$

The interaction of the species with the environment is given by the matrix

$$
R=E S=\left(\begin{array}{cccccccc}
2.31 & 2.81 & -4.60 & 1.14 & -2.60 & 2.23 & 0.85 & 1.12 \tag{2.3}\\
1.52 & 1.85 & -3.01 & 0.72 & -1.71 & 1.44 & 0.56 & 0.73 \\
-3.63 & -2.54 & 18.07 & -0.10 & -2.07 & -3.13 & -3.88 & -1.02 \\
1.80 & 2.14 & -3.57 & 0.89 & -2.03 & 1.73 & 0.66 & 0.88 \\
-2.10 & -4.08 & -4.68 & -2.44 & 7.47 & -2.31 & 1.34 & -1.63 \\
2.13 & 2.51 & -4.21 & 1.05 & -2.37 & 2.03 & 0.74 & 1.03 \\
2.33 & 2.81 & -4.59 & 1.15 & -2.61 & 2.19 & 0.81 & 1.11 \\
2.43 & 2.96 & -4.87 & 1.23 & -2.75 & 2.36 & 0.89 & 1.19
\end{array}\right)
$$

The eigenvectors of R are given by

$$
V_{R}=\left\{\begin{array}{c}
(-0.26,-0.17,0.81,-0.20,-0.09,-0.24,-0.26,-0.27), \tag{2.4}\\
(-0.25,-0.16,-0.28,-0.19,0.78,-0.23,-0.25,-0.26), \\
(0.09,0.60,0.04,-0.39,-0.04,-0.54,0.27,-0.34), \\
(-0.25,-0.08,0.17,-0.18,-0.08,0.45,0.81,-0.07), \\
(-0.34,0.30,-0.01,0.38,0.20,0.40,-0.17,-0.65), \\
(0.59,0.18,0.31,-0.07,0.58,0.38,0.09,0.18), \\
(0.08,-0.05,-0.02,-0.23,-0.13,0.40,-0.16,-0.86), \\
(-0.43,0.12,-0.13,-0.39,-0.01,0.09,-0.49,0.62)
\end{array}\right\}
$$

The eigenvalues of the matrix R are given by

$$
\{22.53,12.08,0.06,-0.05,-0.03,0.02,0.01,0.00\} .
$$

The eigenvector of R with largest eigenvalue is

$$
(-0.26,-0.17,0.81,-0.20,-0.09,-0.24,-0.26,-0.27) \text {. }
$$

The eigenvectors of the matrix S are given by

$$
V_{S}=\left\{\begin{array}{c}
(0.10,-1.00,0.01,0.00,0.00,0.00,0.00,0.00), \tag{2.5}\\
(0.35,0.03,-0.83,-0.38,-0.18,0.05,0.12,0.01), \\
(-0.56,-0.05,0.04,-0.48,0.20,0.09,0.64,0.01), \\
(-0.40,-0.04,-0.48,0.74,0.01,0.08,0.22,-0.03), \\
(0.02,0.00,0.02,-0.01,0.14,0.92,-0.17,0.34), \\
(-0.49,-0.05,0.00,-0.17,-0.78,0.06,-0.33,0.02), \\
(0.39,0.04,0.29,0.21,-0.55,0.17,0.62,0.06), \\
(-0.03,0.00,-0.03,0.03,0.00,-0.34,0.02,0.94),
\end{array}\right\}
$$

The probabilities of production are as shown in the following table: Individual Probability

| \& | $(-0.26,-0.17,0.81,-0.20,-0.09,-0.24,-0.26,-0.27)$ | 0.02 |
| :--- | :--- | :--- | :--- |
| $(-0.25,-0.16,-0.28,-0.19,0.78,-0.23,-0.25,-0.26)$ | 0.52 | |
| * | $(0.09,0.60,0.04,-0.39,-0.04,-0.54,0.27,-0.34)$ | 0.01 |
| * | $(-0.25,-0.08,0.17,-0.18,-0.08,0.45,0.81,-0.07)$ | 0.24 |
| of | $(-0.34,0.30,-0.01,0.38,0.20,0.40,-0.17,-0.65)$ | 0.07 |
| $(0.59,0.18,0.31,-0.07,0.58,0.38,0.09,0.18)$ | 0.09 | |
| $(0.08,-0.05,-0.02,-0.23,-0.13,0.40,-0.16,-0.86)$ | 0.01 | |
| \& | $(-0.43,0.12,-0.13,-0.39,-0.01,0.09,-0.49,0.62)$ | 0.04 |

3 Motivation

In quantum mechanics, observables are represented by self-adjoint operators on a Hilbert space. Thus in proposing a model of quantum speciation, it is natural to regard a species as a whole as some self-adjoint operator S. In the quantum mechanical setting, each possible measurement of an observable corresponds to a unit eigenvector and eigenvalue of this operator, so by analogy we regard each unit eigenvector of the species linear operator S to represent a possible individual. We postulate that each species will have only finitely many possible individuals, thus we assume that S, and also the Hilbert space, have finite dimension. Thus S is in fact Hermitian. We may then regard the eigenvalues of each unit eigenvector (i.e. individual) of S as representing the reproductive strength of that individual. We model the influence of the environment by means of a linear operator E which is composed with S to produce the resultant operator R. We require that (E, S) be compatible, in the sense defined above, so that R will have all real eigenvalues and a unique largest eigenvalue.

The definition of probability of production was motivated by the following observation. If $\vec{\phi}$ is a random vector in \mathbb{R}^{n}, how may we determine the unit vector $\hat{v} \in \mathbb{R}^{n}$ which maximizes the expectation value $E(\vec{\phi} \cdot \hat{v})^{2}$? It is not difficult to show that this is accomplished by taking \hat{v} to be the eigenvector
$\hat{v}_{\text {max }}$ with maximal eigenvalue of the matrix

$$
\left(\begin{array}{cccc}
E \phi_{1} \phi_{1} & E \phi_{1} \phi_{2} & \cdots & E \phi_{1} \phi_{n} \\
E \phi_{2} \phi_{1} & E \phi_{2} \phi_{2} & \cdots & E \phi_{2} \phi_{n} \\
\vdots & \vdots & \ddots & \vdots \\
E \phi_{n} \phi_{1} & E \phi_{n} \phi_{2} & \cdots & E \phi_{n} \phi_{n}
\end{array}\right) .
$$

The maximal value of $E(\vec{\phi} \cdot \hat{v})^{2}$ is then equal to this eigenvalue. We may express $\hat{v}_{\text {max }}$ as a unique linear combination of the eigenvectors (individuals) of S, like so: $\hat{v}_{\max }=\sum_{i=1}^{N}\left(\hat{v}_{\max } \cdot \hat{s}_{i}\right) \hat{s}_{i}$. Again following the pattern seen in the quantum mechanical setting, we define the probability of "observing," i.e. producing the individual represented by \hat{s}_{i} as $\left|\left\langle\hat{v}_{\text {max }}, \hat{s}_{i}\right\rangle\right|^{2}=\left(\hat{v}_{\text {max }} \cdot \hat{s}_{i}\right)^{2}$. Although the motivation involves Hermitian operators R, this is not assumed in the definition of compatible operators.

